Publication in Biotechnology and Bioengineering

Dvorak P, Bednar D, Vanacek P, Balek L, Eiselleova L, Stepankova V, Sebestova E, Kunova Bosakova M, Konecna Z, Mazurenko S, Kunka A, Vanova T, Zoufalova K, Chaloupkova R, Brezovsky J, Krejci P, Prokop Z, Dvorak P, Damborsky J, 2018: Computer-Assisted Engineering of Hyperstable Fibroblast Growth Factor 2. Biotechnology and Bioengineering (just accepted): doi:

Fibroblast growth factors (FGFs) serve numerous regulatory functions in complex organisms, and their corresponding therapeutic potential is of growing interest to academics and industrial researchers alike. However, applications of these proteins are limited due to their low stability. Here we tackle this problem using a generalizable computer-assisted protein engineering strategy to create a unique modified FGF2 with nine mutations displaying unprecedented stability and uncompromised biological function. The data from the characterization of stabilized FGF2 showed a remarkable prediction potential of in silico methods and provided insight into the unfolding mechanism of the protein. The molecule holds a considerable promise for stem cell research and medical or pharmaceutical applications.

OPUS grant awarded by NCN

 

We have been awarded an OPUS grant from NCN to deliver new approaches for analysis of ligand transport pathways in proteins. The grant will provide funding for notable expansion of our team in the coming three years.

Publication in Methods in Molecular Biology

Brezovsky J, Kozlikova B, Damborsky J, 2018: Computational Analysis of Protein Tunnels and Channels. In: Bornscheuer U., Höhne M. (eds) Protein Engineering. Methods in Molecular Biology, vol 1685. Humana Press, New York, NY, pp. 25-42. full text

Protein tunnels connecting the functional buried cavities with bulk solvent and protein channels, enabling the transport through biological membranes, represent the structural features that govern the exchange rates of ligands, ions, and water solvent. Tunnels and channels are present in a vast number of known proteins and provide control over their function. Modification of these structural features by protein engineering frequently provides proteins with improved properties. Here we present a detailed computational protocol employing the CAVER software that is applicable for: (1) the analysis of tunnels and channels in protein structures, and (2) the selection of hot-spot residues in tunnels or channels that can be mutagenized for improved activity, specificity, enantioselectivity, or stability.

Publication in Journal of Chemical Information and Modeling

Marques SM,  Dunajova Z, Prokop Z, Chaloupkova R, Brezovsky J, Damborsky J, 2017: Catalytic Cycle of Haloalkane Dehalogenases towards Unnatural Substrates Explored by Computational Modeling. Journal of Chemical Information and Modeling 57: 1970–1989. full text

Abstract Image

The anthropogenic toxic compound 1,2,3-trichloropropane is poorly degradable by natural enzymes. We have previously constructed the haloalkane dehalogenase DhaA31 by focused directed evolution (Pavlova, M. et al. Nat. Chem. Biol. 2009, 5, 727−733), which is 32 times more active than the wild-type enzyme and is currently the most active variant known against that substrate. Recent evidence has shown that the structural basis responsible for the higher activity of DhaA31 was poorly understood. Here we have undertaken a comprehensive computational study of the main steps involved in the biocatalytic hydrolysis of 1,2,3-trichloropropane to decipher the structural basis for such enhancements. Using molecular dynamics and quantum mechanics approaches we have surveyed (i) the substrate binding, (ii) the formation of the reactive complex, (iii) the chemical step, and (iv) the release of the products. We showed that the binding of the substrate and its transport through the molecular tunnel to the active site is a relatively fast process. The cleavage of the carbon–halogen bond was previously identified as the rate-limiting step in the wild-type. Here we demonstrate that this step was enhanced in DhaA31 due to a significantly higher number of reactive configurations of the substrate and a decrease of the energy barrier to the SN2 reaction. C176Y and V245F were identified as the key mutations responsible for most of those improvements. The release of the alcohol product was found to be the rate-limiting step in DhaA31 primarily due to the C176Y mutation. Mutational dissection of DhaA31 and kinetic analysis of the intermediate mutants confirmed the theoretical observations. Overall, our comprehensive computational approach has unveiled mechanistic details of the catalytic cycle which will enable a balanced design of more efficient enzymes. This approach is applicable to deepen the biochemical knowledge of a large number of other systems and may contribute to robust strategies in the development of new biocatalysts.