New publication in Journal of Chemical Information and Modeling

Sequeiros-Borja C, Bartlomiej Surpeta, Thirunavukarasu AS, Dongmo Foumthuim CJ, Igor Marchlewski, Brezovsky J, 2024: Water will find its way: transport through narrow tunnels in hydrolases. Journal of Chemical Information and Modeling, DOI: 10.1021/acs.jcim.4c00094. full text dataset-Hal dataset-Epx dataset-Lip dataset-hEpx dataset-E470G dataset-interactions dataset-Hal with different MD settings

An aqueous environment is vital for life as we know it, and water is essential for nearly all biochemical processes at the molecular level. Proteins utilize water molecules in various ways. Consequently, proteins must transport water molecules across their internal network of tunnels to reach the desired action sites, either within them or by functioning as molecular pipes to control cellular osmotic pressure. Despite water playing a crucial role in enzymatic activity and stability, its transport has been largely overlooked, with studies primarily focusing on water transport across membrane proteins. The transport of molecules through a protein’s tunnel network is challenging to study experimentally, making molecular dynamics simulations the most popular approach for investigating such events. In this study, we focused on the transport of water molecules across three different α/β-hydrolases: haloalkane dehalogenase, epoxide hydrolase, and lipase. Using a 5 μs adaptive simulation per system, we observed that only a few tunnels were responsible for the majority of water transport in dehalogenase, in contrast to a higher diversity of tunnels in other enzymes. Interestingly, water molecules could traverse narrow tunnels with subangstrom bottlenecks, which is surprising given the commonly accepted water molecule radius of 1.4 Å. Our analysis of the transport events in such narrow tunnels revealed a markedly increased number of hydrogen bonds formed between the water molecules and protein, likely compensating for the steric penalty of the process. Overall, these commonly disregarded narrow tunnels accounted for ∼20% of the total water transport observed, emphasizing the need to surpass the standard geometrical limits on the functional tunnels to properly account for the relevant transport processes. Finally, we demonstrated how the obtained insights could be applied to explain the differences in a mutant of the human soluble epoxide hydrolase associated with a higher incidence of ischemic stroke.

New publication in The Journal of Physical Chemistry B

Bharadwaj P, Shet SM, Bisht M, Sarkar DK, Franklin G, Nataraj SK, Mondal D, 2023: Suitability of adenosine derivatives in improving the activity and stability of cytochrome c under stress: Insights into the effect of phosphate groups. The Journal of Physical Chemistry B doi: 10.1021/acs.jpcb.3c05996. full text

It is well known that adenosine and its phosphate derivatives play a crucial role in biological phenomena such as apoptosis and cell signaling and act as the energy currency of the cell. Although their interactions with various proteins and enzymes have been described, the focus of this work is to demonstrate the effect of the phosphate group on the activity and stability of the native heme metalloprotein cytochrome c (Cyt c), which is important from both biological and industrial aspects. In situ and in silico characterizations are used to correlate the relationship between the binding affinity of adenosine and its phosphate groups with unfolding behavior, corresponding peroxidase activities, and stability factors. Interaction of adenosine (ADN), adenosine monophosphate (AMP), adenosine 5′-diphosphate (ADP), and adenosine 5′-triphosphate (ATP) with Cyt c increases peroxidase-like activity by up to 1.8–6.5-fold compared to native Cyt c. This activity is significantly maintained even after multiple stress conditions such as oxidative stress and the presence of a chaotropic agent such as guanidine hydrochloride (GuHCl). With binding affinities on the order of ADN < AMP < ADP < ATP, adenosine derivatives were found to stabilize Cyt c by varying the secondary structural features of the protein. Thus, in addition to being a fundamental study, the current work also proposes a way of stabilizing protein systems to be used for real-time biocatalytic applications.

Two new grants awarded to the members of LabBIT

The great success of Nishita, tackling the lowest so far success rates of 13 %. Her proposal is one of only five awarded grants in the NZ2 panel of PRELUDIUM22 competition by National Science Center Poland: results link

Aaftaab was awarded Researcher Collaborations Grant by Royal Society of Chemistry to explore ligand transport role in drug design in collaboration with the University of Galway.

 

Many congratulations & stay tuned for exciting results to come!!