New publication in ACS Catalysis

Surpeta B, Grulich M, Palyzová A, Marešová H, Brezovsky J, 2022: Common Dynamic Determinants Govern Quorum Quenching Activity in N-Terminal Serine Hydrolases. ACS Catalysis 12: 6359-6374. full text

Growing concerns about microbial antibiotic resistance have motivated extensive research into ways of overcoming antibiotic resistance. Quorum quenching (QQ) processes disrupt bacterial communication via quorum sensing, which enables bacteria to sense the surrounding bacterial cell density and markedly affects their virulence. Due to its indirect mode of action, QQ is believed to exert limited pressure on essential bacterial functions and may thus avoid inducing resistance. Although many enzymes display QQ activity against various bacterial signaling molecules, their mechanisms of action are poorly understood, limiting their potential optimization as QQ agents. Here, we evaluate the capacity of three N-terminal serine hydrolases to degrade N-acyl-homoserine lactones (HSLs) that serve as signaling compounds for Gram-negative bacteria. Using molecular dynamics (MD) simulations of the free enzymes and their complexes with two signaling molecules of different lengths, followed by quantum mechanics/molecular mechanics MD simulations of two catalytic steps, we clarify the molecular processes underpinning their QQ activity. We conclude that all three enzymes degrade HSLs via similar reaction mechanisms. Moreover, we experimentally confirmed the activity of two penicillin G acylases from Escherichia coli (ecPGA) and Achromobacter spp. (aPGA), adding these industrially optimized enzymes to the QQ toolbox. We also observed substrate-dependent differences in the catalytic actions of these enzymes, arising primarily from the distinct structures of their acyl-binding cavities and the dynamics of their molecular gates. As a consequence, the first reaction step catalyzed by ecPGA with a longer substrate had an elevated energy barrier compared to its complex with a shorter substrate because its shallow acyl-binding site could not accommodate a productive substrate-binding configuration of the former one. Conversely, aPGA in complex with the shorter substrate exhibited unfavorable energetics in the first step, while the longer substrate was penalized in the second step, both due to the dynamics of the residues gating the acyl-binding cavity entrance. Finally, the energy barriers of the second reaction step catalyzed by Pseudomonas aeruginosa acyl-homoserine lactone acylase with both substrates were higher than in the other two enzymes due to the unique positioning of Arg297β in this enzyme. The discovery of these dynamic determinants will guide future efforts to design robust QQ agents capable of selectively controlling virulence in resistant bacterial species.

Publication in Briefings in Bioinformatics

Sequeiros-Borja CE, Surpeta B, Brezovsky J, 2020: Recent advances in user-friendly computational tools to engineer protein function. Briefings in Bioinformatics. (Advance article DOI: 10.1093/bib/bbaa150) full text

Progress in technology and algorithms throughout the past decade has transformed the field of protein design and engineering. Computational approaches have become well-engrained in the processes of tailoring proteins for various biotechnological applications. Many tools and methods are developed and upgraded each year to satisfy the increasing demands and challenges of protein engineering. To help protein engineers and bioinformaticians navigate this emerging wave of dedicated software, we have critically evaluated recent additions to the toolbox regarding their application for semi-rational and rational protein engineering. These newly developed tools identify and prioritize hotspots and analyze the effects of mutations for a variety of properties, comprising ligand binding, protein–protein and protein–nucleic acid interactions, and electrostatic potential. We also discuss notable progress to target elusive protein dynamics and associated properties like ligand-transport processes and allosteric communication. Finally, we discuss several challenges these tools face and provide our perspectives on the further development of readily applicable methods to guide protein engineering efforts.

Publication in International Journal of Molecular Sciences

Surpeta B, Sequeiros-Borja CE, Brezovsky J, 2020: Dynamics, a Powerful Component of Current and Future in Silico Approaches for Protein Design and EngineeringInternational Journal of Molecular Sciences 21: 2713. full textIjms 21 02713 g001

Computational prediction has become an indispensable aid in the processes of engineering and designing proteins for various biotechnological applications. With the tremendous progress in more powerful computer hardware and more efficient algorithms, some of in silico tools and methods have started to apply the more realistic description of proteins as their conformational ensembles, making protein dynamics an integral part of their prediction workflows. To help protein engineers to harness benefits of considering dynamics in their designs, we surveyed new tools developed for analyses of conformational ensembles in order to select engineering hotspots and design mutations. Next, we discussed the collective evolution towards more flexible protein design methods, including ensemble-based approaches, knowledge-assisted methods, and provable algorithms. Finally, we highlighted apparent challenges that current approaches are facing and provided our perspectives on their further development.

New CAVER-derived tools published

Stourac J, Vavra O, Kokkonen P, Filipovic J, Pinto G, Brezovsky J, Damborsky J, Bednar D, 2019: Caver Web 1.0: Identification of Tunnels and Channels in Proteins and Analysis of Ligand Transport. Nucleid Acids Research (advance article DOI: 10.1093/nar/gkz378). full text

Caver Web 1.0 is a web server for comprehensive analysis of protein tunnels and channels, and study of the ligands’ transport through these transport pathways. Caver Web is the first interactive tool allowing both the analyses within a single graphical user interface. The server is built on top of the abundantly used tunnel detection tool Caver 3.02 and CaverDock 1.0 enabling the study of the ligand transport. The program is easy-to-use as the only required inputs are a protein structure for a tunnel identification and a list of ligands for the transport analysis. The automated guidance procedures assist the users to set up the calculation in a way to obtain biologically relevant results. The identified tunnels, their properties, energy profiles and trajectories for ligands’ passages can be calculated and visualized. The tool is very fast (2-20 min per job) and is applicable even for virtual screening purposes. Its simple setup and comprehensive graphical user interface make the tool accessible for a broad scientific community. The server is freely available at https://loschmidt.chemi.muni.cz/caverweb.

Filipovic J, Vavra O, Plhak J, Bednar D, Marques  SM, Brezovsky J, Matyska L, Damborsky J, 2019: CaverDock: A Novel Method for the Fast Analysis of Ligand TransportIEEE Transactions on Computational Biology and Bioinformatics (early access DOI:10.1109/TCBB.2019.2907492). full text

Here we present a novel method for the analysis of transport processes in proteins and its implementation called CaverDock. Our method is based on a modified molecular docking algorithm. It iteratively places the ligand along the access tunnel in such a way that the ligand movement is contiguous and the energy is minimized. The result of CaverDock calculation is a ligand trajectory and an energy profile of the transport process. CaverDock uses the modified docking program Autodock Vina for molecular docking and implements a parallel heuristic algorithm for searching the space of possible trajectories. Our method lies in between the geometrical approaches and molecular dynamics simulations. Contrary to the geometrical methods, it provides an evaluation of chemical forces. However, it is far less computationally demanding and easier to set up compared to molecular dynamics simulations. CaverDock will find broad use in the fields of computational enzymology, drug design and protein engineering. The software is available free of charge to the academic users at https://loschmidt.chemi.muni.cz/caverdock/.

Vavra O, Filipovic J, Plhak J, Bednar D, Marques SM, Brezovsky J, Stourac J, Matyska L, Damborsky J, 2019: CaverDock: A Molecular Docking-Based Tool to Analyse Ligand Transport through Protein Tunnels and Channels. Bioinformatics (accepted manuscript DOI: 10.1093/bioinformatics/btz386). full text

Motivation: Protein tunnels and channels are key transport pathways that allow ligands to pass between proteins’ external and internal environments. These functionally important structural features warrant detailed attention. It is difficult to study the ligand binding and unbinding process experimentally, while molecular dynamics simulations can be time-consuming and computationally demanding.
Results: CaverDock is a new software tool for analysing the ligand passage through the biomolecules. The method uses the optimised docking algorithm of AutoDock Vina for ligand placement docking and implements a parallel heuristic algorithm to search the space of possible trajectories. The duration of the simulations takes from minutes to a few hours. Here we describe the implementation of the method and demonstrate CaverDock’s usability by i) comparison of the results with other available tools, ii) determination of the robustness with large ensembles of ligands and iii) the analysis and comparison of the ligand trajectories in engineered tunnels. Thorough testing confirms that CaverDock is applicable for the fast analysis of ligand binding and unbinding in fundamental enzymology and protein engineering.
Availability: User guide and binaries for Ubuntu are freely available for non-commercial use at https://loschmidt.chemi.muni.cz/caverdock/. The web implementation is available at https://loschmidt.chemi.muni.cz/caverweb/. The source code is available on request.

Publication in JACS

Kokkonen P, Sykora J, Prokop Z, Ghose A, Bednar D, Amaro M, Beerens K, Bidmanova S, Slanska M, Brezovsky J, Damborsky J, Hof M, 2018: Molecular Gating of an Engineered Enzyme Captured in Real Time. Journal of the American Chemical Society (just accepted), doi: 10.1021/jacs.8b09848. full text

Engineering dynamical molecular gates represents a widely applicable strategy for designing efficient biocatalysts. Here we analyzed the dynamics of a molecular gate artificially introduced into an access tunnel of the most efficient haloalkane dehalogenase using pre-steady-state kinetics, a single-molecule fluorescence spectroscopy and molecular dynamics. Photoinduced electron-transfer – fluorescence correlation spectroscopy (PET-FCS) has enabled real-time observation of molecular gating at single molecule level with the rate constants (kon = 1822 s-1, koff = 60 s-1) corresponding well with those from the pre-steady-state kinetics (k-1 = 1100 s-1, k1 = 20 s-1).