Kokkonen P, Sykora J, Prokop Z, Ghose A, Bednar D, Amaro M, Beerens K, Bidmanova S, Slanska M, Brezovsky J, Damborsky J, Hof M, 2018: Molecular Gating of an Engineered Enzyme Captured in Real Time. Journal of the American Chemical Society (just accepted), doi: 10.1021/jacs.8b09848. full text
Engineering dynamical molecular gates represents a widely applicable strategy for designing efficient biocatalysts. Here we analyzed the dynamics of a molecular gate artificially introduced into an access tunnel of the most efficient haloalkane dehalogenase using pre-steady-state kinetics, a single-molecule fluorescence spectroscopy and molecular dynamics. Photoinduced electron-transfer – fluorescence correlation spectroscopy (PET-FCS) has enabled real-time observation of molecular gating at single molecule level with the rate constants (kon = 1822 s-1, koff = 60 s-1) corresponding well with those from the pre-steady-state kinetics (k-1 = 1100 s-1, k1 = 20 s-1).