Aleksandra’s cool sci-art was just published as the front cover of the current Issue of Plant Physiology. Congrats!!!
Author Archives: briza
New publication in Plant Physiology
Biała-Leonhard W, Bigos A, Brezovsky J, Jasiński M, 2025: Message hidden in α-helices – towards a better understanding of plant ABCG transporters’ multispecificity. Plant Physiology 198: kiaf146. full text
ATP-binding cassette (ABC) transporters are ubiquitous in all organisms and constitute one of the largest protein families. The substantial expansion of this family in plants coincided with the emergence of fundamental novelties that facilitated successful adaptation to a sessile lifestyle on land. It also resulted in selectivity and multispecificity toward endogenous molecules observed for certain ABC transporters. Understanding the molecular determinants behind this intriguing feature remains an ongoing challenge for the functional characterization of these proteins. This review synthesizes current achievements and methodologies that enhance our mechanistic understanding of how ABCG transporters, which are particularly numerous in land plants, specifically recognize and transport endogenous compounds. We examine in silico modeling and the recent advancements in the structural biology of ABCGs. Furthermore, we highlight internal and external factors that potentially influence the substrate selectivity of those proteins. Ultimately, this review contributes to rationalizing our current capacity to fully understand how plants orchestrate membrane transport fulfilled by these proteins.
Nishita defended her doctoral thesis
Today, Nishita aced her Ph.D. defense hereby fulfilling all requirements to the degree award :).
Congratulations Dr. Mandal!!! Have a great success on the postdoctoral phase of your career!
Three new publications from our labmembers
Nikulenkov F, Carbain B, Biswas R, Havel S, Prochazkova J, Sisakova A, Zacpalova M, Chavdarova M, Marini V, Vsiansky V, Weisova V, Slavikova K, Biradar D, Khirsariya P, Vitek M, Sedlak D, Bartunek P, Daniel L, Brezovsky J, Damborsky J, Paruch K, Krejci L, 2025: Discovery of new inhibitors of nuclease MRE11. European Journal of Medicinal Chemistry. DOI: 10.1016/j.ejmech.2024.117226. full text
MRE11 nuclease is a central player in signaling and processing DNA damage, and in resolving stalled replication forks. Here, we describe the identification and characterization of new MRE11 inhibitors MU147 and MU1409. Both compounds inhibit MRE11 nuclease more specifically and effectively than the relatively weak state-of-the-art inhibitor mirin. They also abrogate double-strand break repair mechanisms that rely on MRE11 nuclease activity, without impairing ATM activation. Inhibition of MRE11 also impairs nascent strand degradation of stalled replication forks and selectively affects BRCA2-deficient cells. Herein, we illustrate that our newly discovered compounds MU147 and MU1409 can be used as chemical probes to further explore the biological role of MRE11 and support the potential clinical relevance of pharmacological inhibition of this nuclease.
Sethi A, Kumar J, Vemula D, Gadde D, Talla V, Qureshic IA, Alvala M, 2024: Sugar mimics and their probable binding sites: design and synthesis of thiazole linked coumarin-piperazine hybrids as galectin-1 inhibitors. RSC Advances 14: 36794-36803. full text
Sugar mimics are valuable tools in medicinal chemistry, offering the potential to overcome the limitations of carbohydrate inhibitors, such as poor pharmacokinetics and non-selectivity. In our continued efforts to develop heterocyclic galectin-1 inhibitors, we report the synthesis and characterization of thiazole-linked coumarin piperazine hybrids (10a–10i) as Gal-1 inhibitors. The compounds were characterized using 1H NMR, 13C NMR and HRMS. Among the synthesized molecules, four compounds demonstrated significant inhibitory activity, with more than 50% inhibition observed at a concentration of 20 μM in a Gal-1 enzyme assay. Fluorescence spectroscopy was further utilized to elucidate the binding constant for the synthesized compounds. 10g exhibited the highest affinity for Gal-1, with a binding constant (Ka) of 9.8 × 104 M−1. To elucidate the mode of binding, we performed extensive computational analyses with 10g, including 1.2 μs all-atom molecular dynamics simulations coupled with a robust machine learning tool. Our findings indicate that 10g binds to the carbohydrate binding site of Gal-1, with the coumarin moiety playing a key role in binding interactions. Additionally, our study underscores the limitations of relying solely on docking scores for conformational selection and highlights the critical importance of performing multiple MD replicas to gain accurate insights.
Dhiman D, Sethi A, Sinha R, Biswas S, Franklin G, Mondal D, 2025: Bioinspired design of DNA in aqueous ionic liquid media for sustainable packaging of horseradish peroxidase under biotic stress. Chemical Communications. DOI:10.1039/D4CC05803H. full text
We show that a combination of DNA and ionic liquid significantly increases the stability and activity of HRP and achieves a 4.8-fold higher peroxidase activity than PBS buffer. Also, HRP retains 84% of its activity in IL+DNA compared to 24% in PBS against trypsin digestion. Molecular modeling and spectroscopic studies reveal a protective microenvironment.
New publication in Journal of Chemical Information and Modeling
Thirunavukarasu AS, 2024: Water migration through enzyme tunnels is sensitive to choice of explicit water model. Journal of Chemical Information and Modeling: DOI:10.1021/acs.jcim.4c01177 full text dataset-DhaA
dataset-CYP2D6+AldO
The utilization of tunnels and water transport within enzymes is crucial for their catalytic function as water molecules can stabilize bound substrates and help with unbinding processes of products and inhibitors. Since the choice of water models for molecular dynamics simulations was shown to determine the accuracy of various calculated properties of the bulk solvent and solvated proteins, we have investigated if and to what extent water transport through the enzyme tunnels depends on the selection of the water model. Here, we focused on simulating enzymes with various well-defined tunnel geometries. In a systematic investigation using haloalkane dehalogenase as a model system, we focused on the well-established TIP3P, OPC, and TIP4P-Ew water models to explore their impact on the use of tunnels for water molecule transport. The TIP3P water model showed significantly faster migration, resulting in the transport of approximately 2.5 times more water molecules compared to that of the OPC and 1.7 times greater than that of the TIP4P-Ew. Finally, the transport was 1.4-fold more pronounced in TIP4P-Ew than in OPC. The increase in migration of TIP3P water molecules was mainly due to faster transit times through dehalogenase tunnels. We observed similar behavior in two different enzymes with buried active sites and different tunnel network topologies, i.e., alditol oxidase and cytochrome P450, indicating that our findings are likely not restricted to a particular enzyme family. Overall, this study showcases the critical importance of water models in comprehending the use of enzyme tunnels for small molecule transport. Given the significant role of water availability in various stages of the catalytic cycle and the solvation of substrates, products, and drugs, choosing an appropriate water model may be crucial for accurate simulations of complex enzymatic reactions, rational enzyme design, and predicting drug residence times.